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Quantum Mechanics Based on Probability Wave
Functions Induced by the Minimum Mean
Deviation from Statistical Equilibrium. II

Silviu Guiasu1
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The maximum-entr opy probability distributions are generally used as probabilistic
models for describing statistical equilibrium subject to given mean values of
some random variables. This paper uses probability wave functions obtained by
minimizing the mean deviation from statistical equilibrium subject to generalized
moments and correlations, whose values are determined looking for stationary
points of the mean energy of the quantum system. The results are applied to the
study of the ground state of the helium and lithium atoms.

1. INTRODUCTION

The SchroÈ dinger equation (SchroÈ dinger, 1926) is included today among

the postulates of nonrelativistic quantum mechanics. Its solution is the so-

called wave function c of the corresponding quantum system. It was Born

(1926) who interpreted c * c as being a probability density that may be used
for making predictions about the behavior of quantum systems.

As the ultimate use of the SchroÈ dinger equation is to provide us with

probabilistic models for the behavior of quantum systems, a natural question

comes up: Is it possible to build such probabilistic models without having

to write and solve the corresponding SchroÈ dinger equation? The question is
even more justified if we take into account that the SchroÈ dinger equation

may be solved exactly only for a very limited number of quantum systems,

namely the free particle in a box, the harmonic oscillator, and the hydrogen

atom. The first part of this paper discussed the direct construction of a

probabilistic model for quantum systems looking for the stationary values of
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the mean energy corresponding to the wave function obtained by minimizing

the mean deviation from statistical equilibrium subject to given generalized

correlations. The formalism was applied there to obtain the exact solutions
for some quantum systems (one or two free particles in a box, the harmonic

oscillator, the hydrogen atom) without using the corresponding SchroÈ dinger

equations. In this second part, the formalism is applied to obtain accurate

approximations for the ground state of the helium and lithium atoms.

Summarizing, we start from statistical equilibrium described by a

maximum-entropy probability distribution subject to constraints induced
by given mean values of some random variables. This variational problem,

known as the maximum entropy principle (MEP), is very well studied in

the literature. Thus, on the positive real axis [0, 1 ` ), the solution of MEP

subject to the mean value m is the exponential distribution E( m ). On an

arbitrary interval [a, b] of the real axis, if we have no constraints attached,

then the probability distribution of maximum entropy is the uniform distri-
butions U(a,b). Once the probability distribution that describes statistical

equilibrium is obtained, and u is its density, we choose a sequence of

orthogonal functions with the weight u as a system of generalized coordi-

nates. Such systems of orthogonal functions are the Laguerre polynomials

for the exponential distribution E( m ), the generalized Laguerre polynomials
for the gamma distribution G(1/ a , b 1 1), and either the trigonometric

system or the Legendre (spherical) polynomials for the uniform distribution

U(a,b). As long as the statistical equilibrium is not perturbed, the mean

values of the generalized coordinates remain equal to zero. If, however,

random perturbations induced by internal or/and external interactions alter

the statistical equilibrium, then some of these mean values cease to be
equal to zero. We minimize the mean deviation from statistical equilibrium

subject to given generalized mean values. The mean deviation is measured

using Pearson’ s x 2 indicator from statistical inference. In general, a wave

is just any disturbance to a field. In our context, we introduce a probabil ity

wave function to be the minimum deviation from statistical equilibrium

due to random internal or/and external fluctuations. Once the probability
wave function x is obtained, the normed square of its absolute value is

used as a probability density function on the set of possible configurations.

In the multidimensional case, for incompatible entities (like position and

momentum, for instance) it is senseless to talk about a joint probability

distribution. For independent compatible entities (like the three components

of the position of a particle in a three-dimensional Euclidean space, for
instance), the joint probability density is simply the product of the probabil-

ity densities (i.e., the marginals) of the corresponding entities. For depen-

dent compatible entities (like the positions of several interacting particles,

for instance), the joint probability distribution is not uniquely determined
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by the marginals and by the partial information available about their depen-

dence (like some generalized mixed moments called generalized correla-

tions, for instance). We construct the multidimensional probability wave
obtained by minimizing the mean x 2 deviation from the direct, independent

product of the marginals subject to the given generalized correlations.

Once the one-dimensional or multidimensional probability wave function

is obtained by solving the above-mentioned variational problem, we deter-

mine the unknown generalized correlations (i.e., taken as variational param-

eters) looking for the stationary points of the mean energy of the quantum
system. The formalism is applied to the study of the ground state of the

helium and lithium atoms, and the approximations obtained are surprisingly

good even when the number of variational parameters is small. The compu-

tation is not complicated and may be implemented using a normal per-

sonal computer.

To put what has just been said in a more technical form, let us recall
that if u is a probability density function on the set D #
R1, and {Un , n 5 0,1, . . .}, U0 [ 1, a sequence of orthonormal functions

with the weight u, i.e.,

^ UnUlu & 5 H 1 if l 5 n

0 if l Þ n

which implies that |Un| 5 1 for all n (n 5 0, 1, . . .), with ^ U0u & 5 1 and

^ Unu & 5 0 for all n (n 5 1, 2, . . .). We call {Un , n 5 0, 1, . . .} a system

of generalized coordinates associated to the probability density function u.

The probability density of the uniform distribution U (a, b) is

u (x) 5
1

b 2 a
, x P [a, b]

A system of orthonormal polynomials with this weight is

Un(x) 5 (2n 1 1)1/2 Pn 1 2

b 2 a
x 2

a 1 b

b 2 a 2 (n 5 0, 1, . . .)

where Pn (x) is the Legendre (spherical) polynomial of degree n. The first

ones are

P0(x) 5 1, P1(x) 5 x,

P2 (x) 5
1

2
(3x 2 2 1), P3(x) 5

1

2
(5x 3 2 3x),

P4(x) 5
1

8
(35x 4 2 30x 2 1 3)
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P5(x) 5
1

8
(63x 5 2 70x 3 1 15x)

A system of orthonormal functions with the weight u (x) 5 1/a on D 5
[0, a] is the trigonometric system

U0 [ 1, Un (x) 5 ! 2sin
n p
a

x (n 5 1,2, . . .)

The probability density of the exponential distribution E( m ) is

u (x) 5
1

m
e 2 x / m , x e [0, 1 ` )

A system of orthonormal polynomials with this weight is

Un (x) 5 Ln 1 x

m 2 (n 5 0,1, . . .)

where Ln (x) is the Laguerre polynomial of degree n. The first ones are

L0(x) 5 1, L1(x) 5 2 x 1 1,

L2(x) 5
1

2
(x 2 2 4x 1 2)

L3(x) 5
1

6
( 2 x 3 1 9x 2 2 18x 1 6)

L4(x) 5
1

24
(x 4 2 16x 3 1 72x 2 2 96x 1 24)

L5(x) 5
1

120
( 2 x 5 1 25x 4 2 200x 3 1 600x 2 2 600x 1 120)

The probability density of the gamma distribution G(1/ a , b 1 1), with

parameters a and b 1 1, is

u (x) 5
1

a b 1 1 G ( b 1 1)
x b e 2 x / a , x e [0, 1 ` ),

where a 5 m /( b 1 1). A system of orthonormal polynomials with this
weight is

Un(x) 5 1 n! G ( b 1 1)

G ( b 1 n 1 1) 2
1/2

L
( b )
n 1 x

a 2 (n 5 0, 1, . . .)

where L
( b )
n (x) is the generalized Laguerre polynomial of degree n and order

b . We have
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L (k)
n (x) 5 o

n

l 5 0

( 2 1)l 1 n 1 k

n 2 l 2 1

l!
x l, Ln(x) 5 L (0)

n (x)

If u is a probability density function on the set D # R1 and {Un ,

n 5 0, 1, . . .}, U0 [ 1, a sequence of orthonorma l functions with the weight
u, i.e.,

^ UnUl u & 5 H 1 if l 5 n

0 if l Þ n

which implies that |Un| 5 1 for all n (n 5 0, 1, . . .), with ^ U0u & 5 1, and

^ Unu & 5 0 for all n (n 5 1, 2, . . .). We call {Un , n 5 0, 1, . . .} a system
of generalized coordinates associated to the probability density function u.

Details about the orthonormal polynomials mentioned above may be found

in Abramowitz and Stegun (1972); they may be easily generated using the

computer package MATHEMATICA (Wolfram, 1991).

Let u be a probability density on D # R1 and let {Un , n 5 0, 1, . . .},
U0 [ 1, be a sequence of orthonormal polynomials with the weight u. As

mentioned before, as long as nothing alters the statistical equilibrium

described by the probability density function u, we have ^ Un u & 5 0 (n 5
1, 2, . . .), and also ^ U0 u & 5 ^ u & 5 1. Very often, however, random fluctuations

alter such a statistical equilibrium and the probability density function u has

to be replaced by another probability density function. If the sequence {Un ,
n 5 0, 1, . . .} is complete with respect to the weight u, then another probability

density function f on D may be written as

f 5 u 1 1 1 o
1 `

n 5 1
cnUn 2

where cn 5 ^ Un f & is the Un-moment of f or the mean fluctuation in the

direction Un , and the sum is taken with respect to the values of n (n 5 1,

2, . . .). On the other hand, the solution of the quadratic program

min
f

x 2 5 ^ x 2 & 5 ^ 1 f

u
2 1 2

2

u &

subject to

^ Unf & 5 cn (n 5 1, 2, . . ., N )

is

f 5 u 1 1 1 o
N

n 5 1
cnUn 2
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In the multidimensional case, let u and v be two probability density

functions on D1 # R1 and D2 # R1, respectively, and let {Un , n 5 0, 1, . . .}

and {Vl , l 5 0, 1, . . .} (U0 [ 1, V0 [ 1) be two complete systems of
orthonormal functions on D1 and D2 with the weights u and v, respectively.

If there is independence between marginals, then the joint probability density

on D1 3 D2 is simply the direct product uv. But what happens if there is

interdependence between the two components? Consider the system of func-

tions {UnVl; n, l 5 0, 1, . . .} on D1 3 D2 with the weight uv. A joint

probability density function f on D1 3 D2 has the form

f 5 uv 1 1 1 o
1 `

n 5 0
o
1 `

l 5 0
(n,l) Þ (0,0)

cnlUnVl 2
Such a joint probability density function is the closest one, in the x 2 sense,

to the direct independent product uv subject to the generalized mixed moments

(or generalized correlations)

cnl 5 ^ UnVl f &

Indeed, let

x 5
f 2 uv

! uv
5 1 f

uv
2 1 2 ! uv

be the weighted deviation of f from the independent direct product uv. The
solution of the quadratic program

min
f

x 2 5 ^ x 2 &

subject to

^ UnVl f & 5 cnl, (n 5 0, 1, . . . , N; l 5 0, 1, . . . , L; (n,l) Þ (0, 0))

is the density

f 5 uv 1 1 1 o
N

n 5 0
o
L

l 5 0
(n,l) Þ (0,0)

cnlUnVl 2
The generalization to more than two components is straightforward.

2. THE GROUND STATE OF THE HELIUM ATOM

As it is not possible to solve the SchroÈ dinger equation exactly for any

atom or molecule more complicated than the hydrogen atom, approximate

methods, such as perturbation theory and the variational method, are used
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instead. For the helium atom, for instance, the corresponding SchroÈ dinger

equation cannot be solved exactly.

The helium atom has a nucleus and two electrons. Fixing the nucleus

at the origin of a three-dimensional Euclidean coordinate system (x, y, z),

the Hamiltonian operator has the form

HÃ5 2
" 2

2m
( , 2

1 1 , 2
2) 2

2e 2

4 p « 0 1 1

r1

1
1

r2 2 1
e 2

4 p « 0

1

r12

where

, 2
i 5

- 2

- x 2
i

1
- 2

- y 2
i

1
- 2

- z 2
i

is the Laplacian operator for electron i (i 5 1, 2), ri is the radial distance

from the nucleus (the origin) to electron i, r12 is the distance between the

two electrons, m is the electronic mass, and " , e, « 0 are constants. Using atomic

units, i.e., taking " 5 1, m 5 1, e 5 1, 4 p « 0 5 1, the Hamiltonian becomes

HÃ5 2
1

2
( , 2

1 1 , 2
2) 2 1 2

r1

1
2

r 2 2 1
1

r12

(1)

For such a quantum system the variational method provides an upper bound

to its ground-state energy. The ground-state wave function c 0 and energy E0

satisfy HÃc 0 5 E0 c 0, where HÃ is the Hamiltonian operator of the system.

According to the variational principle, for any other function c we have E c

$ E0, with

E c 5
^ c *HÃc &
^ c * c &

where c * is the complex conjugate of c . The trial function c is chosen such

that it depends on some arbitrary parameters a , b , g , . . . , in which case E c

also will depend on these variational parameters, E c ( a , b , g , . . .) $ E0. The

variational parameters are determined in order to minimize E c ( a , b , g , . . .).

There is no unique or optimal way of selecting the trial function c in the

literature. The first trial function of interest was introduced 69 years ago by

Hylleraas (1929), namely,

c (r1, r2, r12) 5 e 2 a r1e 2 a r2 [1 1 P (r1, r2, r12)] (2)
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where P is a polynomial in r1, r2, r12 whose coefficients, together with a ,

are taken as variational parameters. No theoretical justification of this choice

was given, but it proved to give a value of the ground energy of the helium

atom in very accurate agreement with the experimental value. Reminiscences

of the early quantum mechanics of two-electron atoms may be found in the

very well-written paper by Hylleraas (1963). Since 1929, many generaliza-

tions of Hylleraas’ approach have been proposed, but again, without a sound

theoretical justification. Trial functions of the form (2) proposed in the litera-

ture contained more and more variational parameters in the expression of

the polynomial P (r1, r2, r12) namely, 39 in Kinoshita (1957) and even 1078

in Pekeris (1959). Details may be found in McQuarrie (1983, p. 291).

The objective of this section is to show that the general formalism

discussed in the first part of the paper may be applied for approximating the

ground-state energy of the helium atom. The case of one electron was dis-

cussed in Section 7 of the first part. For the helium atom, we deal with a

system of two interdependent electrons with random behavior. Switching

from the Cartesian coordinates (x1, y1, z1, x2, y2, z2) to the spherical coordi-

nate system

xi 5 ri sin u i cos v i , yi 5 ri sin u i sin v i ,

zi 5 ri cos v i , (i 5 1, 2)

0 # ri , 1 ` , 0 # u i # p , 0 # v i # 2 p (i 5 1, 2)

and eventually changing to variables si 5 cos u i (i 5 1, 2), with 2 1 # si #
1, the joint probability density of the system formed by the two electrons of

the helium atom is

g (x1, y1, z1; x2, y2, z2) dx1 dy1 dz1 dx2 dy2 dz2

5 f (r1, s1, v 1; r2, s2, v 2) r 2
1 r 2

2 dr1 ds1 d v 1 dr2 ds2 d v 2

5 f1 (r1, s1, v 1) f2 (r2, s2, v 2)

3 [1 1 o
(n,l,k,n8,l8,k8) Þ (0,0,0,0,0,0)

cnlk,n8l8k8Un(r1)Vl(s1)Wk( v 1)

3 Un8(r2)Vl8(s2)Wk8( v 2)]

3 r 2
1r

2
2 dr1 ds1 d v 1 dr2 ds2 d v 2 (3)

with

fi (ri , si , v i) 5 Me(ri)v (si)w( v i) (i 5 1, 2)
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where e (r) 5 (1/ m )e 2 r/ m is the radial exponential probability density with

parameter m on [0, 1 ` );

v (s) 5 1/2 is the uniform probability density on [ 2 1, 1];
w ( v ) 5 1/(2 p ) is the uniform probability density on [0, 2 p ];

fi (ri , si , v i) 5 M(1/4 p m )e 2 ri/ m , where M is a constant which may be

found using the useful formula

#
1 `

0

r ne 2 r/ m dr 5 n! m n 1 1 (4)

from the condition

1 5 ^ fi & 5 #
1 `

0 #
1 1

2 1 #
2 p

0

fi (ri , si , v i)r
2
i dri dsi d v i 5 2 M m 2

implying M 5 1/(2 m 2), which gives

fi (ri , si , v i) 5
1

8 p m 3 e 2 ri/ m (i 5 1, 2) (5)

Further

u (r) 5
1

2 m 2 r 2 e (r) 5
1

2 m 3 r 2e 2 r/ m

is the radial gamma distribution with parameters m and 3 on [0, 1 ` );
Un (r) is the second-order Laguerre polynomial L (2)

n (r / m ) of degree n,

with U0 [ 1;

Vl (s) is the Legendre polynomial (2l 1 1)1/2 Pl(s) of degree l, with V0

[ 1; and

Wk ( v ) is the trigonometric function ! 2 sin (k v /2), with W0 [ 1.

The corresponding joint and marginal probability wave functions are

c 5 ! f, c i 5 ! fi (i 5 1, 2)

respectively. Thus,

c i (ri , si , v i) 5
1

! 8 p m 3
e 2 ri/(2 m )

depending only on ri. Using the approximation ! 1 1 t ’ 1 1 (1/2)t, which

gives good results for small values of t, an approximation of the joint probabil-

ity wave function of the system of two electrons of the helium atom is

c (r1, s1, v 1; r2, s2, v 2)

5 c 1(r1, s1, v 1) c 2(r2, s2, v 2)
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3 F 1 1 o
(n,l,k,n8,l8,k8) Þ (0,0,0,0,0,0)

1

2
cnlk,n8l8k8Un(r1)Vl(s1)Wk( v 1)

3 Un8(r2)Vl8(s2)Wk8( v 2) G (6)

which gives good results when the generalized correlation coefficients cnlk,n8l8k8

have relatively small values. Let us take now some simple joint probability
wave functions of type (6) into account and see how accurately they can

describe the ground state of the helium atom.

2.1. The Ground Energy Using the First-Order Radial
Generalized Correlation

We assume in this subsection that the two electrons are linearly dependent

in terms of the radial variable r and denote c 5 1±2 c100,100 , assuming that all

the other generalized correlation coefficients cnlk,n8l8k8 are equal to zero. The

joint probability wave function (6) becomes

c (r1, r2) 5 c 1(r1) c 2(r 2)[1 1 cL(2)
1 (r1/ m )L (2)

1 (r2/ m )]

5
1

8 p m 3 e 2 (r1 1 r2)/(2 m ) F 1 1 c 1 3 2
r1

m 2 1 3 2
r2

m 2 G (7)

As c 1 depends only on the radial variable r1, the corresponding Laplacian

has the form

, 2
1 c 1 5

d 2 c 1

dr2
1

1
2

r1

d c 1

dr1

5 1 1

4 m 2 2
1

m r1 2 c 1

and from (7) we get

, 2
1 c 5

d 2 c
dr2

1

1
2

r1

d c
dr1

5 F 1 1

4 m 2 2
1

m r1 2 1 c 1 33

4 m 2 2
15

m r1

2
3r1 1 11r2

4 m 3 1
5r2

m 2r1

1
r1r2

4 m 4 2 G c 1(r1) c 2(r2)
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Using (4) several times, we obtain

^ c , 2
1 c & 5 #

1 `

0 #
1 1

2 1 #
2 p

0 #
1 `

0 #
1 1

2 1 #
2 p

0

c , 2
1 c r 2

1r
2
2 dr1 ds1 d v 1 dr2 ds2 d v 2

5 2
1

4 m 2 (1 1 21 c 2) (8)

Similarly, we get

^ c , 2
2 c & 5 2

1

4 m 2 (1 1 21 c 2) (9)

From (7), using again (4) several times, we obtain

^ c
1

ri

c & 5 #
1 `

0 #
1 1

2 1 #
2 p

0 #
1 `

0 #
1 1

2 1 #
2 p

0

1

ri

c 2r 2
1r

2
2 dr1 ds1 d v 1 dr2 ds2 d v 2

5
1

2 m
(1 1 9 c 2) (i 5 1, 2) (10)

The following series representation of 1/r12 in terms of Legendre polyno-

mials is well known (FluÈ gge, 1974, Vol. 2, p. 63; McQuarrie, 1983, p. 340):

1

r12

5 o
1 `

l 5 0

r l
,

r l 1 1
.

P l(s1) Pl(s2) (11)

where r , 5 min {r1, r2} and r . 5 max{r1, r2}.

Using (7), (11), the orthogonali ty of Legendre polynomials, and the
useful formulas

#
1 `

a

xe 2 a x dx 5 1 1

a 2 1
a

a 2 e 2 a a

#
b

0

x 2e 2 a x dx 5
2

a 3 2 1 2

a 3 1
2b

a 2 1
b 2

a 2 e 2 a b.

#
1 `

a

x 2e 2 a x dx 5 1 2

a 3 1
2a

a 2 1
a 2

a 2 e 2 a a

#
b

0

x 3e 2 a x dx 5
6

a 4 2 1 6

a 4 1
6b

a 3 1
3b 2

a 2 1
b 3

a 2 e 2 a b

#
1 `

a

x 3e 2 a x dx 5 1 6

a 4 1
6a

a 3 1
3a 2

a 2 1
a 3

a 2 e 2 a a
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#
b

0

x 4e 2 a x dx 5
24

a 5 2 1 24

a 5 1
24b

a 4 1
12b 2

a 3 1
4b 3

a 2 1
b 4

a 2 e 2 ab

we get

^ c
1

r12

c &

5 #
1 `

0 #
1 1

2 1 #
2 p

0 #
1 `

0 #
1 1

2 1 #
2 p

0

c 2(r1, r2) o
1 `

l 5 0

r l
,

r l 1 1
.

Pl(s1)Pl(s2)

3 r 2
1r

2
2 dr1 ds1 d v 1 dr2 ds2 d v 2

5 4 p 2 #
1 `

0 #
1 `

0

c 2(r1, r2)
2

r .
r 2

1r
2
2 dr1 dr2

5 8 p 2 #
1 `

0 F 1

r1 #
r1

0

c 2(r1, r2)r
2
2 dr2 1 #

1 `

r1

c 2(r1, r2)r2 dr2 G r 2
1 dr1

5
1

32 m
(10 1 12c 1 63c 2) (12)

From (7), applying again (4), we get

^ c c & 5 #
1 `

0 #
1 1

2 1 #
2 p

0 #
1 `

0 #
1 1

2 1 #
2 p

0

c 2(r1,r2)r
2
1 r 2

2dr1ds1d v 1dr2ds2d v 2

5 1 1 9c 2 (13)

Taking (1) into account, the mean energy is

^ E & 5
^ c HÃc &
^ c c &

5 F 2
1

2
( ^ c , 2

1 c & 1 ^ c , 2
1 c & )

2 2( ^ c
1

r1

c & 1 ^ c
1

r2

c & ) 1 ^ c
1

r12

c & G Y ^ c c & (14)

and from (8)±(10), (12), and (13), we obtain

^ E & 5
1 1 21c 2

4 m 2(1 1 9c 2)
2

54 2 12c 1 513c 2

32 m (1 1 9c 2)
(15)

Introducing a 5 1/ m , the mean energy ^ E & becomes a rational function
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depending on two variational parameters a and c. Looking for stationary

points of ^ E & , the system of equations

- ^ E &
- a

5 0,
- ^ E &
- c

5 0

gives

a 5
54 2 12c 1 513c 2

16(1 1 21c 2)
5

2 6 1 27c 1 54c 2

96c
(16)

The second equality implies

378c 4 2 837c 3 2 99c 2 2 5 0.

It is easy to approximate the real roots of this polynomial in c. For instance,

using the package MATHEMATICA, Version 2.1 (Wolfram, 1991), the neces-
sary commands are:

math
f[c 2 ]: 5 378,c Ù 4 2 837,c Ù 3Ð 99,cÐ 2

NSolve[f[c] 5 5 0,c]

Quit

The output gives the two real roots

c 5 2 0.020132404375 3751, c 5 2.2657577738586 5

the other two roots being complex numbers. The first value, c 5
2 0.020132404, gives the minimum value of ^ E & . From (16) we obtain a 5
3.37437, and therefore m 5 1/ a 5 0.296351 bohr, and the minimum value

of the mean energy (15) is

min ^ E & 5 2 2.860394 a.u. 5 2 77.8359 eV

Remark 1. From experimental point of view, there is a variety of results

mentioned for the true value of the double ionization potential of the helium

atom, i.e., the energy value needed to dissociate both electrons from the helium

nucleus. Thus, the following experimental values have been mentioned: 2 78.6

eV (Messiah, 1964), 2 78.62 eV (Anderson, 1971), 2 78.8882 and 2 78.8932
eV (Harnwell and Livingood, 1961), 2 78.9832 eV (Born, 1969),

2 78.99673525 eV (Dean, 1992), 2 79.0 eV (Striganov and Sventitskii, 1968;

Fano, 1969; BoÈ hm, 1979), 2 79.0052 eV (Lide, 1996). Some experimental

physicists (Fano, 1969; BoÈ hm, 1979) consider the value 2 79.0 eV as a lower

bound, or a threshold for the double ionization potential of the helium atom.
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Remark 2. If the two electrons of the helium atom are assumed to be

statistically independent, which is equivalent to taking c 5 0, the probability

wave function (7) becomes

c (r1,r2) 5 c 1(r1) c (r2) 5
1

! 8 p m 3
e 2 r1/(2 m ) 1

! 8 p m 3
e 2 r2/(2 m )

Going through the same steps as above, we obtain

^ c , 2
i c & 5 2

1

4 m 2, ^ c
1

ri

c & 5
1

2 m
(i 5 1, 2) ^ c

1

r 12

c & 5
5

16 m

and, introducing these expressions into (14), we get

^ E & 5
1

4 m 2 2
27

16 m

Using again a 5 1/ m and taking

- ^ E &
- a

5 0

we get a 5 27/8 5 3.375, which gives m 5 1/ a 5 0.2962962 bohr and

min ^ E & 5 2 2.84765625 a.u. 5 2 77.48928281 eV

This last case, dealing with statistically independent electrons, is generally
treated in textbooks. It gives the approximation 2 77.4893 eV for the ground

energy of the helium atom. As seen before, the more general assumption that

the electrons are statistically linearly dependent gave a better approximation,

namely 2 77.8359 eV. Moreover, the two variational parameters from the

expression (7) of the probability wave function c may be easily interpreted.

Thus, m 5 0.296351 bohr gives the mean radial distance of the electrons
from the nucleus, whereas the correlation coefficient c 5 2 0.020132404

shows the intensity of the statistical linear dependence between the two

electrons. As the two electrons both have a negative electric charge, they

repel each other and consequently it is normal to have a negative linear

correlation coefficient that reflects such a behavior. Due to the approximation

! 1 1 t ’ 1 1 t /2 used in getting the probability wave function c from the

joint probability density of the two electrons, a more accurate evaluation of

the linear correlation coefficient between the two electrons of the helium

atom would be

r 5
2c

1 1 9c 2 5 2 0.040118463

where the denominator is the norm of the probability wave function ^ c 2 & 5
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1 1 9c 2. The difference of the two approximations obtained for the ground

energy, namely ( 2 77.4893 eV) 2 ( 2 77.8359 eV) 5 0.3466 eV, could be

taken as an energy measure of the linear radial dependence between the two
electrons of the helium atom, whereas the difference between 2 77.8359 eV

and the experimental value 2 79.0 eV, namely 1.1641 eV, is an energy measure

of the nonlinear dependence between the two electrons.

Remark 3. Referring to (7), let us notice that the probability wave

function should by antisymmetric, as required by the Pauli exclusion principle.

If s i is the spin variable of electron i (i 5 1, 2), let a and b be the spin

eigenfunctions. The orthonormality conditions imply

# d s i a *( s i) a ( s i) 5 # d s i b *( s i) b ( s i) 5 1 (i 5 1, 2)

# d s i a *( s i) b ( s i) 5 # d s i a *( s i) b *( s i) 5 0 (i 5 1, 2)

because two electrons with the same spatial quantum numbers must have
opposite spin. The antisymmetric probability wave function is

C 5 c (r1,r2)[ a ( s 1) b ( s 2) 2 a ( s 2) b ( s 1)]

Taking the orthonorma lity conditions into account and the fact that

C * 5 c (r1,r2)[ a *( s 1) b *( s 2) 2 a *( s 2) b *( s 1)]

we obtain

^ C *HÃC & 5 # dr1 dr2 d s 1 d s 2 C *HÃC

5 # dr1 dr2 c (r1,r2) HÃc (r1,r2) 5 ^ c HÃc &

because the Hamiltonian HÃdoes not depend on spin. Similarly,

^ C * C & 5 # dr1 dr2 d s 1 d s 2 C * C 5 # dr1 dr2 c (r1r2)
2 5 ^ c 2 &

Thus, we obtain

^ E & 5
^ C *HÃC &
^ C * C &

5
^ c HÃc &
^ c 2 &

The last ratio has been used to calculate min ^ E & .
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2.2. The Ground Energy Using Higher Order Radial Generalized
Correlations

Let us take a probability wave function (6) that contains five generalized

radial correlations, replacing (7), which contains only one linear radial correla-
tion, by

c (r1,r2) 5
1

8 p m 3 e 2 (r1 1 r2)/(2 m ) H 1 1 a F L (2)
1 1 r1

m 2 1 L (2)
1 1 r2

m 2 G
1 bL (2)

1 1 r1

m 2 L (2)
1 1 r2

m 2 1 c F L (2)
2 1 r1

m 2 1 L (2)
2 1 r2

m 2 G
1 q F L (2)

1 1 r1

m 2 L (2)
2 1 r2

m 2 1 L (2)
2 1 r1

m 2 L (2)
1 1 r2

m 2 G
1 gL(2)

2 1 r1

m 2 L (2)
2 1 r2

m 2 J
Appendix A contains a MATHEMATICA program that does in this more

involved case what we did analytically in the previous simpler case that dealt

with the probability wave function (7). We obtain in this case

m 5 0.260945353 bohr, a 5 2 0.0857747,

b 5 2 0.0149716 c 5 0.0255457,

q 5 2 0.0000732054, g 5 2 0.00114415

min ^ E & 5 2 2.8783 a.u. 5 2 78.32315 eV

It may be seen that the value obtained for the ground energy is closer to the

experimental threshold 2 79.0 eV.

2.3, The Ground Energy Using Radial and Angular Generalized
Correlations

The dependence between the two electrons of the helium atom may be
expressed not only in terms of radial correlations, but of angular correlations

as well. Thus, let us take the probability wave function (6) of the form

c (r1,r2,s1s 2)

5
1

8 p m 3 e 2 (r1 1 r2)/(2 m ) H 1 1 a F L (2)
1 1 r1

m 2 1 L (2)
1 1 r2

m 2 G
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1 bL (2)
1 1 r1

m 2 L (2)
1 1 r2

m 2 1 c F L (2)
2 1 r1

m 2 1 L (2)
2 1 r2

m 2 G
1 gL (2)

2 1 r1

m 2 L (2)
2 1 r2

m 2 1 fP1(s1)P1(s2) J (17)

where L (2)
n is the second-order Laguerre polynomial of degree n, and Pl is

the Legendre polynomial of degree l.
We use here the Laplacian

¹ 2
i c 5

- 2 c
- r 2

i

2
2

ri

- c
- ri

2
2si

r 2
i

- c
- si

1
1 2 s 2

i

r 2
i

- 2 c
- s 2

i

(i 5 1,2) (18)

and the series expansion

1

r12

5 o
1 `

l 5 0

r l
,

r l 1 1
.

Pl(cos u 1)Pl(cos u 2) 5 o
1 `

l 5 0

r l
,

r l 1 1
.

Pl(s1)Pl(s2)

where

r , 5 min{r1,r2}, r . 5 max{r1,r2}, si 5 cos u i (i 5 1,2)

Appendix B contains a MATHEMATICA program that finds the mini-

mum mean energy min ^ E & , the mean distance m of the electrons from the

nucleus, and the values of the generalized radial (a,b,c,g) and angular ( f )
correlations. Running the program interactively, we obtain

m 5 0.269261 bohr, a 5 2 0.0703336,

b 5 2 0.0174889, c 5 0.0241668, g 5 2 0.00116699,

f 5 2 0.0455481, min ^ E & 5 2 2.88134 a.u.

5 2 78.40587154 eV

The value of f shows that the linear angular correlation between u 1 and

u 2 is not negligible and its inclusion into the probability wave function (17)

has improved the corresponding approximation of the ground energy.

2.4. A Generalization of Hylleraas’ Trial Function

Long ago, Hylleraas (1929) had the idea of using r1, r2, and r12 as basic

variables in dealing with the two electrons of the helium atom instead of the
Cartesian or spherical coordinates. As mentioned in Hylleraas (1963, p. 425):

A systematic attack on the ground state problem of the Helium atom had been

planned by Max Born in cooperation with a pupil, Dr. BiemuÈ ller, since Born
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himself had no preference for numerical work. However, the enterprise came to

a stop by the failing health of Dr. BiemuÈ ller before his work became particularly

useful . . . Professor Born first suggested to me thatÐ as he saidÐ I was the right

one to go on with the Helium problem . . . One thing which I noticed fairly soon

was that solutions must exist which depend only on three coordinates, instead

of the full number of six, and these were the coordinates r1, r2, w , defining

the shape of the electron nucleus triangle, leaving the orientation in space out

of interest.

But the angle w between r1 and r2 may be obviously connected to the distance
r12 between the two electrons, because

2r1r2 cos w 5 r 2
1 1 r 2

2 2 r 2
12.

According to Hylleraas (1963, p. 427), ª What I really invented was rather

u 5 r12, together with the s 5 r1 1 r2 and t 5 2 r1 1 r2, forming the triple

s, t, u of which I am really proud . . . The triple is forever reserved for
atomic research.º

Taking a trial function of the form (2) with the polynomial P (r1, r2, r12)

5 cr12, namely

c (r1,r2,r12) 5 e 2 a r1 e 2 a r2 (1 1 cr12) (19)

with the volume element r1 r2 r12 dr1 dr2 dr12, and using only two variational
parameters a and c, he obtained

min ^ E & 5 2 2.89112 a.u. 5 2 78.672 eV

a result which, as he mentioned (Hylleraas, 1963, p. 427), ª was greatly

admired and thought of as almost a proof of the validity of wave mechanics,
also, in the strict numerical sense.º Hylleraas’ approach, based on the varia-

tion-perturbation method, was refined in numerous subsequent papers, taking

more and more coefficients of the polynomial P (r1, r2, r12) in (6) as variational

parameters, culminating with the work done by Pekeris (1959), who obtained

the value

min ^ E & 5 2 2.903724375 a.u. 5 2 79.0149862 eV

by solving a determinant of order 1078. In fact this theoretical approximation

is smaller than the smallest experimental value ( 2 79.00519 eV) mentioned

in the literature (Lide, 1996, p. 10±214), slightly contradicting the variational
theorem. Details on the computations made by Hylleraas and his followers

may be found in Hylleraas (1929, 1963), Bethe and Salpeter (1957), and

Kinoshita (1957). Summarizing their approach, McQuarrie (1983, p. 294)

writes:

Although these calculations do show that one can obtain essentially exact energies

by using the variational method with r12 in the trial function explicitly, these
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calculations are quite difficult computationall y and do not readily lend themselves

to large atoms and molecules. Furthermore, [in following this line of thought]

we have abandoned the orbital concept altogether. The orbital concept has been

of great use to chemists and so the trend nowadays is to find the Hartree±Fock

orbitals . . . and to correct these by perturbation theory.

Let us notice that the starting point of the Hartree±Fock procedure for helium

atom consists in writing the two-electron wave function as a product of

orbitals, i.e.,

c (r1, r2) 5 c 1(r1) c 2(r2) (20)

which, according to our probabilistic model, is equivalent to taking a probabil-

ity wave function (6) with all generalized correlation coefficients equal to

zero, which means that the electrons are supposed to be statistically indepen-

dent. Let us mention that back in 1929, Hylleraas did not give any probabilistic
justification for his trial function (19). Remarkably enough, he chose an

exponential distribution for the marginals of the joint probability density,

perhaps without being aware of the statistical significance of his choice, and

introduced the distance r12 between electrons as a measure of their correlation.

Using a wave function of the form (19) or (2), or more generally (6), does

not mean to abandon orbitals. It simply means to take statistically dependent
orbitals into account instead of statistically independent ones as expressed

by (20). It is said (McQuarrie, 1983, p. 293) that starting from (20) and

applying perturbation theory, ª it turns out that one reaches a limit [i.e. min

^ E & 5 2 2.8617 a.u. 5 2 77.87143572 eV] which is the best value of the

energy that can be obtained using a trial function of the form of a product

of one-electron wave functions (20).º Or, we have seen that using orbitals
with radial linear dependence (7), the simplest case of statistical dependence

between electrons, we have directly obtained a comparable value, 2 77.8359

eV, for the ground energy, without applying perturbation theory, whereas

taking higher order correlations between electrons into account, the corres-

ponding theoretical values of the ground energy approach the experimental
threshold 2 79.0 eV.

Let us start from Hylleraas’ trial function (19), which takes the interelec-

tron distance r12 as an indicator of the interdependence between the two

electrons, and include also the linear radial correlation between electrons, as

in (7), namely

c (r1, r2, r12) 5 e 2 r1/(2 m ) e 2 r2/(2 m ) F 1 1 cr12 1 bL(1)
1 1 r1

m 2 L (1)
1 1 r2

m 2 G (21)

with the volume element r1 r2 r12 dr1 dr2 dr12, where L (1)
1 (x) 5 2 2 x. Let

us notice that the choice of the Laguerre polynomial L (1)
1 is justified by the

fact that the radial probability density is ri e
2 ri / m , i.e., the density of the gamma
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distribution G (1/ m , 2). We take into account that with respect to the variables

r1,r2 and r12 the Hamiltonian has the form

HÃ5 2
1

2

- 2 c
- r 2

1

2
1

r1

- c
- r1

2
1

2

- 2 c
- r 2

2

2
1

r2

- c
- r2

2
- 2 c
- r 2

12

2
2

r12

- c
- r12

2
r 2

1 2 r 2
2 1 r 2

12

2r1r12

- 2 c
- r1 - r12

2
r 2

2 2 r 2
1 1 r 2

12

2r2r12

- 2 c
- r2 - r12

2 1 2

r1

1
2

r2

2
1

r12 2 c (22)

We obtain in this case

m 5 0.279794 bohr, c 5 0.310042, b 5 2 0.016188

min ^ E & 5 2 2.89511 a.u. 5 2 78.7806 eV

which is a very good result, obtained by using only three variational

parameters.

The most surprising fact comes up when an impressive improvement is

obtained by taking into account a second-order radial correlation as well.

Thus, starting from the probability wave function

c (r1, r2, r12)

5 e 2 r1/(2 m ) e 2 r2/(2 m ) H 1 1 cr12 1 bL(1)
1 1 r1

m 2 L (1)
1 1 r2

m 2
1 a F L (1)

2 1 r1

m 2 1 L (1)
2 1 r2

m 2 G J (23)

and using again the Hamiltonian (22), we obtain

m 5 0.281424 bohr, c 5 0.281515, b 5 2 0.0171302

a 5 0.0204191, min ^ E & 5 2 2.90252 a.u. 5 2 78.9822 eV

using only four variational parameters. At the same time, the probability

wave function (23) and its coefficients have a clear interpretation: the distance

of each electron from the nucleus is exponentially distributed with the mean

m , which, taking the volume element into account, gives a gamma radial

probability distribution with parameters m and 2, and the coefficients 2c, 2b,
2a are the distance between the two electrons and the first- and second-order

generalized correlation coefficients, respectively.

Appendix C gives the MATHEMATICA program which implements the

computation of the ground energy for (23), a program which runs interactively
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in approximately 1 hr on a standard personal computer IBM PS/2, Model

55 SX, with only 8 MB RAM and 60 MB hard disk. Let us notice that

after calculating

min ^ E & 5
^ c HÃc &

^ c 2 &

as a function of the variational parameters m , c, b, and a, the last command

in the program asks for the minimum value of ^ E & . Such a command needs

arbitrary starting values of the variables m , c, b, a. It is reasonable to choose

m 5 1 bohr and c 5 b 5 a 5 0, which means that we start from the first

average orbit and initially assume that the two electrons are statistically

independent. Minimizing the mean energy of the system, the two electrons
prove to interact statistically, moving on average closer to the nucleus, as an

interelectron repelling effect, with a negative first-order (linear) correlation

and positive distance between them and radial second-order (quadratic) gener-

alized correlations.

3. THE GROUND STATE OF THE LITHIUM ATOM

The lithium atom represents an interesting system, where the three

electrons randomly moving around the nucleus do not belong to the same
energy shell. A shell picture of the atom has been in force since the time of

the old quantum theory. In fact Pauli’ s exclusion principle (ª Two electrons

cannot be in exactly the same stateº ) emerged along with spin (ª If the spatial

quantum numbers are the same, then the two electrons must have opposite

spinº ) to explain the picture before the coming of quantum mechanics. The

energy shells were originally defined to be the quantized electron orbits of
Bohr’ s model.

If we (wrongly!) allow all three electrons of the lithium atom to interact

freely inside the same energy shell, let us take the probability wave function

c (r1, r2, r3, s1, s2, s3)

5
1

! 8 p m 3
e 2 r1/(2 m ) 1

! 8 p m 3
e 2 r2/(2 m ) 1

! 8 p m 3
e 2 r3/(2 m )

3 [1 1 b3 L (2)
1 1 r1

m 2 L (2)
1 1 r2

m 2 1 b2L
(2)
1 1 r1

m 2 L (2)
1 1 r3

m 2 1 b1L
(2)
1 1 r2

m 2 L (2)
1 1 r3

m 2
1 f3P1(s1)P1(s2) 1 f2P1(s1)P1(s3) 1 f1P1(s2)P1(s3)] (24)

which is a direct generalization to three electrons of the probability wave

function (17), with a 5 c 5 g 5 0, where si 5 cos u i (i 5 1,2). Using

the Hamiltonian
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HÃ5 2
1

2
( , 2

1 1 , 2
2 1 , 2

3) 2 1 3

r1

1
3

r2

1
3

r3 2
1 1 1

r12

1
1

r13

1
1

r23 2 (25)

with the Laplacian , 2
i given by (18), for i 5 1,2,3, and

1

rij

5 o
1 `

l 5 0

(min{ri , rj})l

(max{ri , rj})l 1 1Pl (si)P l (sj)

we obtain the values

m 5 0.210549 bohr, b1 5 b2 5 b3 5 2 0.0138212

f1 5 f2 5 f3 5 2 0.0380186

min ^ E & 5 2 8.50913 a.u. 5 2 231.547 eV

which is a much smaller value than the experimental value 2 203.48619 eV

(Lide, 1996, p. 10-214), which contradicts the variational theorem. This result

shows that, indeed, the three electrons of the lithium atom are not interacting
freely inside the same energy shell. Also, if the electrons are supposed to be

statistically independent inside the same energy shell, a supposition which

is equivalent to taking bi 5 fi 5 0 (i 5 1, 2, 3) in (24), then we get

min ^ E & 5 2 230.236 eV, a value which is also much below the experimental

value 2 203.48619 eV.

Therefore, let us take the structure of the lithium atom as consisting of
two interdependent electrons in the first closed energy shell, at a mean radial

distance m from the nucleus, and an independent electron in the second, open

energy shell, at a mean radial distance n from the nucleus. Let us emphasize

that the two shells are not rigidly separated; the old orbits from Bohr ’ s

planetary model of the atom correspond to the mean radial distances m
and n mentioned above. Because there is interdependence between the two
electrons of the first shell, the mean radial distance m is kept undetermined,

as a variational parameter, starting from the initial value m 5 1 bohr (as we

did for the helium atom in the previous section), whereas the valence electron

is the only one in the second energy shell, whose mean radial distance is

taken to be n 5 2 bohr. The probability wave function which assumes a

linear radial dependence between the two electrons of the closed energy
shell, with the linear correlation coefficient 2c, an undetermined mean radial

distance m of the closed shell from the nucleus (starting with the initial value

m 5 1 bohr), and an independent valence electron in the open shell at a

mean radial distance n 5 2 bohr from the nucleus, is
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c (r1,r2,r3) 5 H 1

! 8 p m 3
e 2 r1/(2 m ) 1

! 8 p m 3
e 2 r2/(2 m )

3 F 1 1 c L(2)
1 1 r1

m 2 L (2)
1 1 r2

m 2 G J 1

! 8 p n 3
e 2 r3/(2 n )(26)

with n 5 2 bohr, and m , n , where

L (2)
1 (x) 5 3 2 x (i 5 1, 2)

and the volume element is

r 2
1r

2
2r

2
3 dr1 dr2 dr3 ds1 ds2 ds3 d v 1 d v 2 d v 3

with si 5 cos u i (i 5 1, 2, 3).

Using the Hamiltonian (25) with the Laplacian

¹ 2
i c 5

- 2 c
- r 2

i

1
2

ri

- c
- ri

(i 5 1, 2, 3) (27)

we obtain the values

m 5 0.18622 bohr, c 5 2 0.0122754

and

min ^ E & 5 2 7.46071 a.u. 5 2 203.018 eV

which is a value of the ground energy amazingly close to the experimental
value 2 203.486 eV.

Appendix D contains a MATHEMATICA program for calculating

min ^ E & , using the probability wave function (26).

Remark 4. Compared with the helium atom, the two electrons making

up the closed energy shell of the lithium atom are influenced by the existence
of the open shell in the sense that on average they move closer to the nucleus

and their random behavior is more regular, being adequately described by a

linear radial statistical interdependence.

Remark 5. The value of min ^ E & has been calculated by introducing c
given by (26) into

^ E & 5
^ c HÃc &
^ c 2 &

and minimizing this expression with respect to the variational parameters m
and c. The probability wave function (26) is not antisymmetric, as required
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by the Pauli exclusion principle. Let us denote

u (i, j ) 5
1

! 8 p m 3
e 2 ri/(2 m ) 1

! 8 p m 3
e 2 rj/(2 m ) F 1 1 cL(2)

1 1 ri

m 2 L (2)
1 1 rj

m 2 G
v (k) 5

1

! 8 p 23
e 2 rk/4

for i, j, k 5 1, 2, 3. If s i is the spin variable of electron i (i 5 1, 2, 3), let

a and b be the spin eigenfunctions of the electrons belonging to the closed

energy shell and g be the spin eigenfunction of the valence electron. We

have the normality conditions

# d s i a *( s i) a ( s i)

5 # d s i b *( s i) b ( s i) 5 # d s i g *( s i) g ( s i) 5 1 (i 5 1,2,3) (28)

and the orthogonality conditions

# d s i a *( s i) b ( s i) 5 # d s i a ( s i) b *( s i) 5 # d s i a *( s i) g ( s i)

5 # d s i a ( s i) g *( s i) 5 # d s i b *( s i) g ( s i) 5 # d s i b ( s i) g *( s i) 5 0(29)

for i 5 1, 2, 3, because two electrons belonging to the closed energy shell

cannot have the same spin and an electron cannot belong simultaneously

both to the open energy shell and to the closed energy shell. The antisymmetric

probability wave function corresponding to (26) is

C 5 u (1, 2)v (3)[ a ( s 1) b ( s 2) 2 b ( s 1) a ( s 2)] g ( s 3)

2 u (1, 3)v (2)[ a ( s 1) b ( s 3) 2 b ( s 1) a ( s 3)] g ( s 2)

1 u (2, 3)v (1)[ a ( s 2) b ( s 3) 2 b ( s 2) a ( s 3)] g ( s 1) (30)

5 ) a ( s 1) b ( s 1) u (2, 3)v (1) g ( s 1)

a ( s 2) b ( s 2) u (1, 3)v (2) g ( s 2)

a ( s 3) b ( s 3) u (1, 2)v (3) g ( s 3) )
Taking into account the orthonormal ity conditions (28), (29), and the fact that
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C * 5 u (1, 2)v (3)[ a *( s 1) b *( s 2) 2 b *( s 1) a *( s 2)] g *( s 3)

2 u (1, 3)v (2)[ a *( s 1) b *( s 3) 2 b *( s 1) a *( s 3)] g *( s 2)

1 u (2, 3)v (1)[ a *( s 2) b *( s 3) 2 b *( s 2) a *( s 3)] g *( s 1)

we obtain

^ C *HÃC & 5 # dr1 dr2 dr3 d s 1 d s 2 d s 3 C *HÃC

5 2 # dr1 dr2 dr3 u (1, 2)v (3)HÃu(1, 2)v (3)

1 2 # dr1 dr2 dr3 u (2, 3)v (1)HÃu(2, 3)v (1)

1 2 # dr1 dr2 dr3 u (1, 3)v (2)HÃu(1, 3)v (2)

because the Hamiltonian HÃdoes not depend on spin. As HÃis symmetric, we get

^ C *HÃC & 5 6 # dr1 dr2 dr3 u (1, 2)v (3)HÃu(1, 2)v (3) 5 6 ^ c HÃc &

Similarly, we get

^ C * C & 5 # dr1 dr2 dr3 d s 1 d s 2 d s 3 C * C

5 6 # dr1 dr2 dr3 [u (1, 2)v (3)]2 5 6 ^ c 2 &

Thus, we finally get

^ E & 5
^ C *HÃC &
^ C * C &

5
^ c HÃc &
^ c 2 &

as used by us to calculate min ^ E & .

4. CONCLUSION

In standard nonrelativistic quantum mechanics, the SchroÈ dinger equation
is taken as a postulate and the squared absolute value of its solution is

interpreted as being a probability density function used for making predictions

about the behavior of quantum systems. This paper deals with a nonstandard

approach. Given a quantum system, we determine the probability wave func-
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tion whose corresponding probability distribution (i.e., the square of its abso-

lute value) is the closest one to statistical equilibrium subject to generalized

correlation coefficients whose values are obtained by looking for the stationary
points of the mean energy of the system. Statistical equilibrium, determined by

using the principle of maximum entropy, gives the most unbiased probability

distribution on the possible states of the system subject to given mean values.

The closest probability distribution to statistical equilibrium is obtained by

minimizing Pearson’ s mean deviation subject to given generalized correlation

coefficients whose values are obtained, as said before, by looking for station-
ary points of the mean energy of the system. This paper uses this principle

of minimum mean deviation from statistical equilibrium as a tool for con-

structing a mathematical model that allows simple approximations for the

ground state of the helium and lithium atoms, while keeping the computation

relatively simple. The advantage of this tool consists mainly in its flexibility

in dealing with interdependent particles. According to McQuarrie (1983, p.
297), ª the inclusion of electron correlations in atomic and molecular wave

functions is a problem of current and active interest.º

APPENDIX A

We use MATHEMATICA, Version 2.1 (Wolfram, 1991), including the

subroutine `integExp` from the package º Quantumº (Feagin, 1994). If the

fast subroutine `integExp` is not available, then the command Integrate may

be used instead. In the program below, in order to simplify the writing, x,

y, m, and ppsi[x,y] are the symbols replacing r1, r2, m , and c (r1 r2), respec-

tively. At the end of each line press the Enter key.

math

Needs [º Quantum `integExp` º ]

psi[x 2 ]: 5 ((8,(m Ù 3),Pi) Ù ( 2 1/2)), Exp[ 2 x/(2,m)]

ppsi[x 2 ,y 2 ]: 5 psi[x],psi[y],(1 1 a,(LaguerreL[1,2,x/m] 1
LaguerreL[1,2,y/m]) 1 b,LaguerreL[1,2,x/m],LaguerreL[1,2,y/m] 1
c,(LaguerreL[2,2,x/m] 1 LaguerreL[2,2,y/m]) 1
q,(LaguerreL[1,2,x/m],LaguerreL[2,2,y/m] 1
LaguerreL[2,2,x/m],LaguerreL[1,2,y/m]) 1
g,LaguerreL[2,2,x/m],LaguerreL[2,2,y/m])

Expand[16,Pi Ù 2,x Ù 2,y Ù 2,ppsi[x,y] Ù 2]

integExp[%,{x,0,Infinity}]
integExp[%,{y,0,Infinity}]

Expand[16,Pi Ù 2,x Ù 2,y Ù 2, ppsi[x,y],
(D[ppsi[x,y],{x,2}] 1 2,D[ppsi[x,y],x]/x)]

integExp[%,{x,0,Infinity}]
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integExp[%,{y,0,Infinity}]

Expand[16,Pi Ù 2,x Ù 2,y Ù 2, ppsi[x,y],
(D[ppsi[x,y],{y,2}] 1 2,D[ppsi[x,y],y]/y)]
integExp[%,{y,0,Infinity}]

integExp[%,{x,0,Infinity}]

Expand [16,Pi Ù 2,x Ù 2,y Ù 2, (ppsi[x,y] Ù 2)/x]

integExp[%,{x,0,Infinity}]

integExp[%,{y,0,Infinity}]

Expand [16,Pi Ù 2,x Ù 2,y Ù 2, (ppsi[x,y] Ù 2)/y]
integExp[%,{y,0,Infinity}]

integExp[%,{x,0,Infinity}]

Expand[(ppsi [x,y]/psi[x]) Ù 2,y,(y 2 x)]

Integrate[%,{y,0,x}]

Expand[(ppsi [x,y]/psi[x]) Ù 2,y]

integExp[%,{y,0,Infinity}]
x,(%%% 1 x,%)

Expand [16,Pi Ù 2,psi[x] Ù 2,%]

integExp[%,{x,0,Infinity}]

2 (%%%%%%%%%%%%%%%%% 1 %%%%%%%%%%%%%%)/2

2 2,(%%%%%%%%%%%% 1 %%%%%%%%%)
(%% 1 % 1 %%%)/ %%%%%%%%%%%%%%%%%%%%%%

Find Minimum [%,{m,1},{a,0},{b,0},{c,0},{q,0},{g,0}]

Quit

APPENDIX B

We use MATHEMATICA, Version 2.1 (Wolfram, 1991), including the

subroutine `integExp` from the package º Quantumº (Feagin, 1994). If the

fast subroutine `integExp` is not available, then the command Integrate may

be used instead. In the program below, in order to simplify the writing, x,

y, m, u, v, and ppsi[x,y,u,v] are the symbols replacing r1, r2, m , s1, s2, and
c (r1, r2, s1, s2)), respectively. At the end of each line press the Enter key.

math

Needs [º Quantum`integExp` º ]

psi[x 2 ]: 5 ((8,(m Ù 3),Pi) Ù ( 2 1/2)),Exp[ 2 x/(2,m)]

ppsi[x 2 ,y 2 ,u 2 ,v 2 ]: 5 psi[x],psi[y],(1 1 a,(LaguerreL[1,2,x/m] 1
LaguerreL[1,2,y/m]) 1 b,LaguerreL[1,2,x/m],LaguerreL[1,2,y/m] 1
c,(LaguerreL[2,2,x/m] 1 LaguerreL[2,2,y/m]) 1
g,LaguerreL[2,2,x/m],LaguerreL[2,2,y/m]) 1
f,LegendreP[1,u],LegendreP[1,v])

Expand[4,Pi Ù 2,x Ù 2,ppsi[x,y,u,v] Ù 2]
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integExp[%,{x,0,Infinity}]

integExp[y Ù 2,%,{y,0,Infinity}]

Integrate[%,{u, 2 1,1},{v, 2 1,1}]
laplace[x 2 ,y 2 ,u 2 ,v 2 ]: 5 D[ppsi[x,y,u,v],{x,2}] 1
2,D[ppsi[x,y,u,v],x]/x 2 2,u,D[ppsi[x,y,u,v,],u] /(x Ù 2)

Expand[4,Pi Ù 2,x Ù 2,ppsi[x,y,u,v] , laplace[x,y,u,v]]

integExp[%,{x,0,Infinity}]

integExp[y Ù 2,%,{y,0,Infinity}]

Integrate[%,{u, 2 1,1},{v, 2 1,1}]
integExp[4,Pi Ù 2,x,ppsi[x,y,u,v] Ù 2,{x,0,Infinity}]

integExp[y Ù 2,%,{y,0,Infinity}]

Integrate[%,{u, 2 1,1},{v, 2 1,1}]

Expand[(1/x 2 1/y 1 (y/x Ù 2 2 x/y Ù 2),u,v), (ppsi[x,y,u,v]/

(psi[x],psi[y])) Ù 2]

Integrate[%,{u, 2 1,1},{v, 2 1,1}]
Expand[%,y Ù 2,psi[y] Ù 2,(2,Pi)]

Integrate[%,{y,0,x}]

Expand[(1/y 1 (x/y Ù 2),u,v),(ppsi[x,y,u,v]/ (psi[x],psi[y])) Ù 2]

Integrate[%,{u, 2 1,1},{v, 2 1,1}]

Expand[%,y Ù 2,psi[y] Ù 2,(2,Pi)]
integExp[%,{y,0,Infinity}]

%%%%% 1 %

integExp[%,x Ù 2,psi[x] Ù 2,(2,Pi),{x,0,Infinity}]

2 %%%%%%%%%%%%%% 2 4,%%%%%%%%%%% 1 %

FindMinimum[%,{m,1},{a,0},{b,0},{c,0},{g,0},{ f,0}]

Quit

APPENDIX C

We use MATHEMATICA, Version 2.1 (Wolfram, 1991), including the

subroutine `integExp` from the package º Quantumº (Feagin, 1994). If the
fast subroutine `integExp` is not available, then the command Integrate may

be used instead. In the program below, in order to simplify the writing, x,

y, z, ppsi[x,y,z], m, and hamppsi are the symbols replacing r1, r2, r12, c (r1,

r2, r12), m , and HÃc , respectively. At the end of each line press the Enter key.

math

Needs[º Quantum`integExp`º ]
ppsi[x 2 ,y 2 ,z 2 ]: 5 Exp[ 2 (x 1 y)/(2,m)],(1 1 c,z 1
b,LaguerreL[1,1,x/m],LaguerreL[1,1,y/m] 1
a,(LaguerreL[2,1,x/m] 1 LaguerreL[2,1,y/m]))

hamppsi[x 2 ,y 2 ,z 2 ]: 5 2 D[ppsi[x,y,z],{x,2}]/2 2
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D[ppsi[x,y,z],x] /x 2 D[ppsi[x,y,z],{y,2}] /2 2
D[ppsi[x,y,z],y] /y 2 D[ppsi[x,y,z],{z,2}] 2
2,D[ppsi[x,y,z],z]/z 2 (x Ù 2 2 y Ù 2 1 z Ù 2),
D[D[ppsi[x,y,z] ,x],z]/(2,x,z) 2 (y Ù 2 2 x Ù 2 1 z Ù 2),
D[D[ppsi[x,y,z] ,y],z]/(2,y,z) 2 (2/x 1 2/y 2 1/z),ppsi[x,y,z]

Expand[ppsi[x,y,z],hamppsi[x,y,z] ,x,y,z]

Integrate[%,{z,x 2 y,x 1 y}]

Integrate[%,{y,0,x}]

integExp[%,{x,0,Infinity}]
Integrate[%%%%,{z,y 2 x,x 1 y}]

integExp[%,{y,0,Infinity}]

Integrate[%%,{y,0,x}]

%% 2 %

integExp[%,{x,0,Infinity}]

%%%%%% 1 %
Expand[ppsi[x,y,z,] Ù 2,x,y,z]

Integrate[%,{z,x 2 y,x 1 y}]

Integrate[%,{y,0,x}]

integExp[%,{x,0,Infinity}]

Integrate[%%%%,{z,y 2 x,x 1 y}]
integExp[%,{y,0,Infinity}]

Integrate[%%,{y,0,x}]

%% 2 %

integExp[%,{x,0,Infinity}]

%%%%%% 1 %

%/%%
FindMinimum[%,{m,1},{c,0},{b,0},{a,0}]

Quit

APPENDIX D

We use MATHEMATICA, Version 2.1 (Wolfram, 1991), including the

subroutine `integExp` from the package º Quantumº (Feagin, 1994). If the

fast subroutine `integExp` is not available, then the command Integrate may

be used instead. The program below starts from the probability wave function

(26), with the Hamiltonian (25), for which the Laplacian is (27). In order to

simplify the writing, x, y, z, m, ppsi[x,y], and hamppsi are the symbols
replacing r1, r2, r3, m , c (r1, r2, r3), and HÃc , respectively. At the end of each

line press the Enter key.

math

Needs [º Quantum`integExp` º ]
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psi[x 2 ]: 5 ((8,(m Ù 3),Pi) Ù ( 2 1/2)),Exp[ 2 x/(2,m)]

qsi[z 2 ]: 5 ((8,2 Ù 3,Pi) Ù ( 2 1/2)),Exp[ 2 z/(2,2)]

ppsi[x 2 ,y 2 ,z 2 ]: 5 psi[x],psi[y],(1 1 c,LaguerreL[1,2,x/m],
LaguerreL[1,2,y/m]),qsi[z]

integExp[8,Pi Ù 3,x,ppsi[x,y,z] Ù 2, {x,0,Infinity}]

integExp[y Ù 2,%,{y,0,Infinity}]

integExp[z Ù 2,%,{z,0,Infinity}]

Together[%]

integExp[8,Pi Ù 3,z,ppsi[x,y,z] Ù 2, {z,0,Infinity}]
integExp[x Ù 2,%,{x,0,Infinity}]

integExp[y Ù 2,%,{y,0,Infinity}]

6,%%%%% 1 3,%

laplace1[x 2 ,y 2 ,z 2 ]: 5 D[ppsi[x,y,z],{x,2}] 1 2,D[ppsi[x,y,z],x]/x

Expand[8,Pi Ù 3,x Ù 2,ppsi[x,y,z] ,laplace1[x,y,z]]

integExp[%,{x,0,Infinity}]
integExp[y Ù 2,%,{y,0,Infinity}]

integExp[z Ù 2,%,{z,0,Infinity}]

laplace3[x 2 ,y 2 ,z 2 ]: 5 D[ppsi[x,y,z],{z,2}] 1 2,D[ppsi[x,y,z],z]/z

Expand[8,Pi Ù 3,z Ù 2,ppsi[x,y,z] ,laplace3[x,y,z]]

integExp[%,{z,0,Infinity}]
integExp[x Ù 2,%,{x,0,Infinity}]

integExp[y Ù 2,%,{y,0,Infinity}]

2 %%%%%%% 2 %/2 2 %%%%%%%%%%%%%

t12[x 2 ,y 2 ,z 2 ]: 5 ppsi[x,y,z]/psi[x]

Expand[4,Pi Ù 2,z Ù 2,t12[x,y,z,] Ù 2]

integExp[%,{z,0,Infinity}]
Expand[%,y,(y 2 x)]

Integrate[%,{y,0,x}]

Expand[%%%,y]

integExp[%,{y,0,Infinity}]

x,(%%% 1 x,%)

Expand[2,Pi,psi[x] Ù 2,%]
integExp[%,{x,0,Infinity}]

t23[x 2 ,y 2 ,z 2 ]: 5 ppsi[x,y,z]/psi[y]

Expand[4,Pi Ù 2,x Ù 2,t23[x,y,z] Ù 2]

integExp[%,{x,0,Infinity}]

Expand[%,z,(z 2 y)]

Integrate[%,{z,0,y}]
Expand[%%%,z]

integExp[%,{z,0,Infinity}]

y,(%%% 1 y,%)

Expand[2,Pi,psi[y] Ù 2,%]
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integExp[%,{y,0,Infinity}]

%%%%%%%%%%%%%%%%%%%%%%%

% 1 %%%%%%%%%%%%% 1 2,%%
integExp[8,Pi Ù 3,x Ù 2,ppsi[x,y,z] Ù 2, {x,0,Infinity}]

integExp[y Ù 2,%,{y,0,Infinity}]

integExp[z Ù 2,%,{z,0,Infinity}]

%%%%%/%

FindMinimum[%,{m,1},{c,0}]

Quit
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